1

The Mathematics of Sound

Before You Start

Readiness

You are studying to become an otologist, a specialized doctor who deals with the structure and function of the human ear. Your current studies focus on the power and intensity of sounds.

Name

Source of Sound	Watts
Fire truck siren	10 ³
Turbo propeller plane at take-off	10 ²
Sonic boom	1
Medium-loud rock concert	10-1
Helicopter	10-2
Heavy city traffic	10 ⁻³
Alarm clock	10-4
Normal conversation	10 ^{–5}
Busy restaurant	10 ⁻⁶
Average home	10 ⁻⁷
Refrigerator running	10 ⁻⁸
Breathing	10 ⁻¹¹

Team G

• exponent

Date

Review Vocabulary

	Readiness Name	_ Class	Date	
Гhe	Mathematics of Sound (continued)			Team G
	ctivity e power of sound is measured in watts. The table	e at	Threshold of hearing	10 ⁻¹²
	e right lists the power of a variety of sounds in w			
1.	Write the number of watts of the sound made by a busy restaurant as a fraction and as a decimal.			
2.	Write the power of each sound without using an exponent.			
	a. Fire truck siren			
	b. Breathing			
	c. Normal conversation			
3.	The power of the sound of breathing is how many times as great as the threshold of hearing?			
4.	The power of the sound of a trubo propeller plane a times as great as the power of the sound of a busy		•	
5.	Use your answers to Questions 1-4 to explain the p exponents and powers of 10.	attern you	ı see with	
de by	exponents and powers of 10. you move father from the source of a sound, the creases. The intensity, measured in watts per sq the equation $I = 0.08Pd^{-2}$. In the formula, P is the watts and d is the distance in meters from the so	uare mete e power o	er, is given f the sound	
6.	Use the formula to find the intensity of the various s	sounds.		
	a. Normal conversation at a distance of 5 meters			

b. Medium-loud rock concert at a distance of 2 meters

digits – grade 8 • Readiness Lesson Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

	_	adiness Name		Class	Date	Team G
	c.	. Helicopter at a distanc	ce of 1 meter			
7.	 Find the intensities of a fire truck siren at distances of 5 m, 10 m and 20 m. 					
	b.	. What is the relationshi	ip among the inten	sities you found in par	t (a)?	
8.	be	UICK REPORT Use you elow. In the first column he middle and right colur	, write the power o	of the sound. For the so	•	

Normal	Medium-Loud Rock	Fire Truck Siren
Conversation	Concert (<i>d</i> = 2 m)	(<i>d</i> = 20 m)

- 9. **REFLECT** Explain how you used each skill in this activity.
 - a. simplifying powers with positive exponents
 - **b.** simplifying powers with negative exponents

- **1.** $\frac{1}{1,000,000}$; 0.000001
- **2. a.** 1,000 watts
 - **b.** 0.0000000001 watt
 - c. 0.00001 watt
- **3.** 10
- **4.** 1,000,000,000,000
- 5. for each power of 10, there is a zero
- 6. a. 0.00000032 watt per square meter
 - b. 0.002 watt per square meter
 - c. 0.0008 watt per square meter
- **7. a.** 3.2 watts per square meter; 0.8 watt per square meter; 0.2 watt per square meter
 - **b.** As the distance doubles, the intensity is 4 times less.
- 8.

Normal	Medium-Loud Rock	Fire Truck Siren
Conversation	Concert (<i>d</i> = 2 m)	(<i>d</i> = 20 m)
0.00001 watt	0.002 watt per square meter	0.2 watt per square meter

- 9. Answers may vary. Sample answers are given.
 - **a.** I simplified powers with positive exponents when I determined the power of a fire truck siren. I also simplified powers with positive exponents when I compared the intensities of a fire truck siren at different distances.
 - b. I simplified powers with negative exponents when I determined the powers of various sounds. I also simplified powers with negative exponents when I calculated intensities of objects at different distances.